Anthropogenic N Deposition Slows Decay by Favoring Bacterial Metabolism: Insights from Metagenomic Analyses

نویسندگان

  • Zachary B. Freedman
  • Rima A. Upchurch
  • Donald R. Zak
  • Lauren C. Cline
چکیده

Litter decomposition is an enzymatically-complex process that is mediated by a diverse assemblage of saprophytic microorganisms. It is a globally important biogeochemical process that can be suppressed by anthropogenic N deposition. In a northern hardwood forest ecosystem located in Michigan, USA, 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. Here, we paired extracellular enzyme assays with shotgun metagenomics to assess if anthropogenic N deposition has altered the functional potential of microbial communities inhabiting decaying forest floor. Experimental N deposition significantly reduced the activity of extracellular enzymes mediating plant cell wall decay, which occurred concurrently with changes in the relative abundance of metagenomic functional gene pathways mediating the metabolism of carbohydrates, aromatic compounds, as well as microbial respiration. Moreover, experimental N deposition increased the relative abundance of 50 of the 60 gene pathways, the majority of which were associated with saprotrophic bacteria. Conversely, the relative abundance and composition of fungal genes mediating the metabolism of plant litter was not affected by experimental N deposition. Future rates of atmospheric N deposition have favored saprotrophic soil bacteria, whereas the metabolic potential of saprotrophic fungi appears resilient to this agent of environmental change. Results presented here provide evidence that changes in the functional capacity of saprotrophic soil microorganisms mediate how anthropogenic N deposition increases C storage in soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay.

Anthropogenic release of biologically available nitrogen (N) has increased dramatically over the last 150 years, which can alter the processes controlling carbon (C) storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan in the United States, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased ...

متن کامل

Common Waterborne Diseases Due to Bacterial, Fungal and Heavy Metal Contamination of Waters: A Case Study from Nacharam Area of Hyderabad, India

Nacharam and its surroundings, located inside the city of Hyderabad in Telangana State, India, is vulnerable to water-borne diseases; therefore, the present research works on concentrations of dissolved hexavalent chromium (57-263 mgL-1), lead (34-65 mgL-1), cadmium (2.3-22.4 mgL-1), and nickel (from below detection limit to 6.5 mgL-1) in different surface water and groundwater bodies of this a...

متن کامل

Common Waterborne Diseases Due to Bacterial, Fungal and Heavy Metal Contamination of Waters: A Case Study from Nacharam Area of Hyderabad, India

Nacharam and its surroundings, located inside the city of Hyderabad in Telangana State, India, is vulnerable to water-borne diseases; therefore, the present research works on concentrations of dissolved hexavalent chromium (57-263 mgL-1), lead (34-65 mgL-1), cadmium (2.3-22.4 mgL-1), and nickel (from below detection limit to 6.5 mgL-1) in different surface water and groundwater bodies of this a...

متن کامل

The Phylogenetic Diversity of Metagenomes

Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relati...

متن کامل

Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition.

Future rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016